Optimized Production of Xylitol from Xylose Using a Hyper-Acidophilic Candida tropicalis
نویسندگان
چکیده
The yeast Candida tropicalis DSM 7524 produces xylitol, a natural, low-calorie sweetener, by fermentation of xylose. In order to increase xylitol production rate during the submerged fermentation process, some parameters-substrate (xylose) concentration, pH, aeration rate, temperature and fermentation strategy-have been optimized. The maximum xylitol yield reached at 60-80 g/L initial xylose concentration, pH 5.5 at 37 °C was 83.66% (w/w) on consumed xylose in microaerophilic conditions (kLa = 2·h(-1)). Scaling up on 3 L fermenter, with a fed-batch strategy, the best xylitol yield was 86.84% (w/w), against a 90% of theoretical yield. The hyper-acidophilic behaviour of C. tropicalis makes this strain particularly promising for industrial application, due to the possibility to work in non-sterile conditions.
منابع مشابه
Xylitol production is increased by expression of codon-optimized Neurospora crassa xylose reductase gene in Candida tropicalis
Xylose reductase (XR) is the first enzyme in D: -xylose metabolism, catalyzing the reduction of D: -xylose to xylitol. Formation of XR in the yeast Candida tropicalis is significantly repressed in cells grown on medium that contains glucose as carbon and energy source, because of the repressive effect of glucose. This is one reason why glucose is not a suitable co-substrate for cell growth in i...
متن کاملXylitol Production from Corn Cobs Hemicellulosic Hydrolysate by Candida tropicalis Immobilized Cells in Hydrogel Copolymer Carrier
The ability of five yeast strains (locally isolated) to ferment xylose to xylitol were screened using a corn cobs hydrolysate. Candida tropicalis proved to be the best producer. The effects of culture conditions, namely initial pH, nitrogen source and yeast extract concentration on xylitol production were evaluated. The conditions for batch production of xylitol, using C. tropicalis immobilized...
متن کاملEnhanced Xylitol Production from Statistically Optimized Fermentation of Cotton Stalk Hydrolysate by Immobilized Candida tropicalis
Cotton (Gossypium hirsutum), which is one of the most abundant crops in the world, is cultivated widely in China, the United States, and Central Asia. The cotton stalk generated with cotton cultivation is an important source of lignocellulosic biomass. In recent years, cotton stalk has received increasing attention from researchers engaged in bioconversion areas, and some high-value products, s...
متن کاملProduction of xylitol from D-xylose by a xylitol dehydrogenase gene-disrupted mutant of Candida tropicalis.
Xylitol dehydrogenase (XDH) is one of the key enzymes in d-xylose metabolism, catalyzing the oxidation of xylitol to d-xylulose. Two copies of the XYL2 gene encoding XDH in the diploid yeast Candida tropicalis were sequentially disrupted using the Ura-blasting method. The XYL2-disrupted mutant, BSXDH-3, did not grow on a minimal medium containing d-xylose as a sole carbon source. An enzyme assa...
متن کاملEvaluation of Fermentation Conditions by Candida tropicalis for Xylitol Production from Sago Trunk Cortex
Xylitol production from sago trunk cortex hydrolysate using Candida tropicalis was evaluated in shake flasks and a bioreactor. The fermentation and kinetic behaviours of this microorganism were investigated using sago trunk cortex hydrolysate and commercial xylose as substrate. Results obtained for sago trunk hydrolysate were close to the commercial xylose with xylitol yield of 0.82 gg -1 and p...
متن کامل